Technological watch

Preparation, Characterization, In Vitro Release, and Antibacterial Activity of Oregano Essential Oil Chitosan Nanoparticles

Essential oils have unique functional properties, but their environmental sensitivity and poor water solubility limit their applications. Therefore, we encapsulated oregano essential oil (OEO) in chitosan nanoparticles (CSNPs) and used tripolyphosphate (TPP) as a cross-linking agent to produce oregano essential oil chitosan nanoparticles (OEO-CSNPs). The optimized conditions obtained using the Box–Behnken design were: a chitosan concentration of 1.63 mg/mL, TPP concentration of 1.27 mg/mL, and OEO concentration of 0.30%. The OEO-CSNPs had a particle size of 182.77 ± 4.83 nm, a polydispersity index (PDI) of 0.26 ± 0.01, a zeta potential of 40.53 ± 0.86 mV, and an encapsulation efficiency of 92.90%. The success of OEO encapsulation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The scanning electron microscope (SEM) analysis showed that the OEO-CSNPs had a regular distribution and spherical shape. The in vitro release profile at pH = 7.4 showed an initial burst release followed by a sustained release of OEO. The antibacterial activity of OEO before and after encapsulation was measured using the agar disk diffusion method. In conclusion, OEO can be used as an antibacterial agent in future food processing and packaging applications because of its high biological activity and excellent stability when encapsulated.

Publication date: 22/11/2022

Author: Yuan Ma

Reference: doi: 10.3390/foods11233756

MDPI (foods)


This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.