Technological watch

A Facile Strategy for Development of pH-Sensing Indicator Films Based on Red Cabbage Puree and Polyvinyl Alcohol for Monitoring Fish Freshness

This study aimed to develop a novel pH-sensing biopolymer film based on red cabbage puree (RCP) incorporated with polyvinyl alcohol (PVA), which was utilized for monitoring fish freshness during storage at 25 °C. A homogenized RCP suspension with a mean particle size of 12.86 ± 0.03 μm and a total anthocyanin concentration of 292.17 ± 2.65 mg/L was directly used as a film-forming substance and anthocyanin source to blend with PVA, showing visual changes in color and ultraviolet-visible spectra within a pH of 2–12. Rheological and microstructural studies certified the strong interactions and good compatibility between the RCP and PVA, resulting in better mechanical properties and water resistance of the composite film than those of a pure RCP film, but without affecting its pH sensitivity. When used for fish freshness monitoring at 25 °C, the developed RCP/PVA film presented visible color differences from purple to yellow, which corresponded to the spoilage threshold of the total volatile basic nitrogen and the total viable count in fish samples. The study highlights that anthocyanin-rich purees of fruits and vegetables, in this case red cabbage puree, can be fully utilized to develop eco-friendly pH-sensing indicator films for intelligent food packaging.

Publication date: 26/10/2022

Author: Hejun Wu

Reference: doi: 10.3390/foods11213371

MDPI (foods)


This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.