Technological watch

Outstanding Approach to Enhance the Safety of Ready-to-Eat Rice and Extend the Refrigerated Preservation

Rice is a broad-spectrum meal consumed annually in large amounts. Ready-to-eat rice is a member of dishes with a high risk of contamination. The present study aimed to increase the safety and shelflife of ready-to-eat rice during temporary storage. To prepare a mixture for extraction, three spices were chosen ginger: thyme:coriander (1:2:1). Two types of extract were prepared, aromatic and water extracts. The bioactive aromatic extract was preserved by encapsulation using chitosan nanoparticle preparation, while water extracts were prepared by warm diffusion. The aromatic extract possessed volatiles with antimicrobial features, including α-pinene, cymene, camphor, 1, 8 cineol, and limonene. The results expressed the extracts’ better antifungal and antibacterial effect, with a distinguishing aromatic one. Water extract was recorded as being rich in phenolic and flavonoids, like Salysilic, p-hydroxybenzoic acid, ferulic, Luteolin 7 glucoside, and quercitin. These molecules play functionality for microbial inhibition in the simulated media. Ready-to-eat rice shelflife was extended by applying the aromatic extract of the encapsulated mixture at the late stage of cooking and before packaging. It can preserve the samples for up to five days at room temperature and up to eight days of refrigerator storage (8 °C). However, water extract had lower activity as antibacterial and antifungal than the aromatic one. Again, water extract activity reduces fungal citrinin secretion by low efficiency more than the aromatic extract. These results recommended the addition of aromatic extract to the ready-to-eat rice meals as a final additive just before packaging.

Publication date: 28/06/2022

Author: Najla A. Albaridi

Reference: doi: 10.3390/foods11131928

MDPI (foods)


This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.