Technological watch

Optimization of the Spinneret Rotation Speed and Airflow Parameters for the Nozzleless Forcespinning of a Polymer Solution

This paper addresses the changing of the process parameters of nozzleless centrifugal spinning (forcespinning). The primary aim of this study was to determine the dependence of the final product on the dosing of the polymer, the rotation speed of the spinneret and the airflow in order to determine the extent of the technological applicability of aqueous polyvinyl alcohol (PVA) and its modifications. PVA was chosen because it is a widely used polymeric solution with environmentally friendly properties and good biodegradability. It is used in the health care and food packaging sectors. The nanofibrous layers were produced by means of a mobile handheld spinning device of our own construction. This mobile application of the spinning machine has several limitations compared to stationary laboratory equipment, mainly due to dimensional limitations. The uniqueness of our device lies in the possibility of its actual use outside the laboratory. In addition to improved mobility, another exciting feature is the combination of nozzleless forcespinning and fiber application using airflow. Dosing, the rotation speed of the spinnerets and the targeted and controlled use of air comprise the fundamental technological parameters for many devices that operate on a centrifugal force system. The rotation rate of the spinnerets primarily affects the production of fibers and their quality, while the airflow acts as a fiber transport and drying medium. The quality of the fibers was evaluated following the preparation of a testing set for the fiber layers. The most suitable combinations of rotation speed and airflow were then used in subsequent experiments to determine the ideal settings for the device. The solution was then modified by reducing the concentration to 16% and adding a surfactant, thus leading to a reduction in the diameters of the resulting fibers. The nanofiber layers so produced were examined using a scanning electron microscope (SEM) in order to analyze the number of defects and to statistically evaluate the fiber diameters.

Publication date: 05/03/2022

Author: Josef Skrivanek

Reference: doi: 10.3390/polym14051042

MDPI (polymers)



      

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.