Technological watch

Expanding Poly(Lactic Acid) (PLA) and Polyhydroxyalkanoates (PHAs) Applications: A Review on Modifications and Effects

The high price of petroleum, overconsumption of plastic products, recent climate change regulations, the lack of landfill spaces in addition to the ever-growing population are considered the driving forces for introducing sustainable biodegradable solutions for greener environment. Due to the harmful impact of petroleum waste plastics on human health, environment and ecosystems, societies have been moving towards the adoption of biodegradable natural based polymers whose conversion and consumption are environmentally friendly. Therefore, biodegradable biobased polymers such as poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs) have gained a significant amount of attention in recent years. Nonetheless, some of the vital limitations to the broader use of these biopolymers are that they are less flexible and have less impact resistance when compared to petroleum-based plastics (e.g., polypropylene (PP), high-density polyethylene (HDPE) and polystyrene (PS)). Recent advances have shown that with appropriate modification methods—plasticizers and fillers, polymer blends and nanocomposites, such limitations of both polymers can be overcome. This work is meant to widen the applicability of both polymers by reviewing the available materials on these methods and their impacts with a focus on the mechanical properties. This literature investigation leads to the conclusion that both PLA and PHAs show strong candidacy in expanding their utilizations to potentially substitute petroleum-based plastics in various applications, including but not limited to, food, active packaging, surgical implants, dental, drug delivery, biomedical as well as antistatic and flame retardants applications.

Publication date: 06/12/2021

Author: Ahmed Z. Naser

Reference: doi: 10.3390/polym13234271

MDPI (polymers)


This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.