Technological watch

Effect of Graphene Oxide on the Properties of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate)

The main shortcomings of polyhydroxybutyrate (PHB), which is a biodegradable and biocompatible polymer used for biomedical and food packaging applications, are its low thermal stability, poor impact resistance and lack of antibacterial activity. This issue can be improved by blending with other biodegradable polymers such as polyhydroxyhexanoate to form poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), which is a copolymer with better impact strength and lower melting point. However, PHBHHx shows reduced stiffness than PHB and poorer barrier properties against moisture and gases, which is a drawback for use in the food industry. In this regard, novel biodegradable PHBHHx/graphene oxide (GO) nanocomposites have been prepared via a simple, cheap and environmentally friendly solvent casting method to enhance the mechanical properties and antimicrobial activity. The morphology, mechanical, thermal, barrier and antibacterial properties of the nanocomposites were assessed via several characterization methods to show the enhancement in the biopolymer properties. The stiffness and strength of the biopolymer were enhanced up to 40% and 28%, respectively, related to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions. Moreover, the nanocomposites showed superior thermal stability (as far as 40 °C), lower water uptake (up to 70%) and better gas and vapour barrier properties (about 45 and 35% reduction) than neat PHBHHx. They also displayed strong biocide action against Gram positive and Gram negative bacteria. These bio-based nanocomposites with antimicrobial activity offer new perspectives for the replacement of traditional petroleum-based synthetic polymers currently used for food packaging.

Publication date: 07/07/2021

Author: Ana M. Díez-Pascual

Reference: doi: 10.3390/polym13142233

MDPI (polymers)


This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.