Technological watch

Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films

The demand for bioplastic material for industrial applications is increasing. However, moisture absorption and low mechanical strength have limited the use of bioplastic in commercial-scale applications. Macroalgae is no exception to these challenges of bioplastics. In this study, Kappaphycus alvarezii macroalgae were reinforced with lignin nanoparticles. Lignin nanoparticles (LNPs) were used as a filler to reduce the brittleness and hydrophilic nature of macroalgae (matrix). Lignin nanofiller was produced using a green approach from black liquor of soda pulping waste and purified. The physical, mechanical, morphological, structural, thermal, and water barrier properties of LNPs with and without the purification process in macroalgae films were studied. The bioplastic films' functional properties, such as physical, mechanical, thermal, and water barrier properties, were significantly improved by incorporating purified and unpurified LNPs. However, the purified LNPs have a greater reinforcement effect on the macroalgae than unpurified LNPs. In this study, bioplastic film with 5% purified LNPs presented the optimum enhancement on almost all the functional properties. The enhancement is attributed to high compatibility due to strong interfacial interaction between the nanofiller and matrix. The developed LNPs/macroalgae bioplastic films can provide additional benefits and solutions to various industrial applications, especially packaging material.

Publication date: 04/03/2021

Author: Samsul Rizal

Reference: doi: 10.3390/nano11030637

MDPI (nanomaterials)


This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.