Technological watch

The Quantitative Nanomechanical Mapping of Starch/Kaolin Film Surfaces by Peak Force AFM

Starch films modified with additives are materials increasingly being used in the production of packaging. These types of biopolymers can, to a considerable degree, replace plastic, contributing to the reduction in both production and waste management costs. However, they should be characterised by specific mechanical and surface parameters which determine their application. In the presented work, the PeakForce Quantitative Nanomechanics Mapping (PFQNM) method was applied to analyse a starch-based biopolymer modified with two different kaolin clay contents (5% and 10%). The technique used facilitates the assessment of the correlation of Atomic Force Microscope AFM height parameters with nanomechanical ones which provide the definitions of mutual interactions and allow the possibility to analyse materials in respect of various details. The investigated material was mapped in the Derjaguin–Muller–Toporov (DMT) modulus, adhesion and height domains. The results obtained indicated the impact of additives on the determined parameters. Increases in the DMT modulus and the adhesion force, along with the kaolin content, were observed. The enhancement of starch films with kaolin clay also induced growth in the surface roughness parameters.

Publication date: 12/01/2021

Author: Anita Kwa?niewska

Reference: doi: 10.3390/polym13020244

MDPI (polymers)


This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.