Technological watch

Effect of Preparation Parameters on Microparticles with High Loading Capacity and Adsorption Property Adsorbed on Functional Paper

Microparticles encapsulated with orange essential oil were prepared by improved emulsifying solvent volatilization technology, and modified with chitosan to improve their loading and adhesion properties on paper. Characterization was performed by Zetasizer Nano ZS instrument, transmission electron microscope (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FTIR) spectroscopy, thermogravimetric analyzer (TGA), gas-chromatography-mass spectrometry (GC-MS) and the ultrafast GC Electronic Nose Heracles II, etc. The results showed that for poly (lactic-co-glycolic acid) (PLGA) microparticles and chitosan–PLGA microparticles, respectively, the particle sizes were 233.2 and 277.6 nm, loading capacity was 19.17% and 24.36%, Zeta potential was −8.27 and 5.44 mV, adhesive capacity was 76.32 and 324.84 mg/g, and encapsulation efficiency was 93.23% and 94.06%. GC-MS demonstrated that the embedding process minimally effected the aroma quality of orange essential oil. The ultrafast GC Electronic Nose Heracles II showed that chitosan–PLGA microparticles could effectively slow the release of the orange essential oil. Therefore, this work provides a proposal for a better understanding of biodegradable functional packaging paper.

Publication date: 28/10/2019

Author: Zuobing Xiao

Reference: doi: 10.3390/coatings9110704

MDPI (coatings)


This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.