Technological watch

New AI Robotic Systems to Curb Plastic Waste and Upgrade Chemical Recycling


University at Buffalo researchers are developing a novel set of tools that aim to reduce plastic waste and decrease the production of plastic. This includes a robotic system that relies on machine learning and other technologies to autonomously improve its ability to sort plastics, as well as environmentally responsible solvents and new chemistries that breakdown plastics to make them easier to reuse.
NSF Grants USD 2 Mn Grant for New Project
Not only is this work critically important to our planet, it also contributes to the country’s advanced manufacturing capabilities. It will help meet both consumer demand for and corporate commitments to ,” says Paschalis Alexandridis, UB distinguished professor in the department of chemical and biological engineering, who is leading the multidisciplinary effort.

The project is supported by a four-year, $2 million grant the U.S. National Science Foundation (NSF) awarded UB this fall.
It aims to improve the nation’s plastic recycling efforts, which have been muddled since China curtailed plastic waste importing in 2017 with its “National Sword” policy. It also includes public outreach strategies, such as recruiting students underrepresented in STEM (science, technology, engineering and math) fields.
AI Robots and Advanced Solvents
The robotic system under development will combine novel sensor technology that can register the molecular signature of each piece of plastic, and machine learning that, on the basis of these molecular signatures, identifies in real-time the specific type of each piece of plastic.
By integrating this system with existing technologies, researchers aim to create an advanced mixed waste sorting process that also captures and reuses other materials often found in plastic recycling streams, such as contaminants and non-polymeric waste, that make recycling difficult and expensive.
In addition to the robotic system, the research team is investigating how to use environmentally responsible solvents to recover desirable plastics from mixed plastic streams. The solvents would separate the plastic from additives or impurities, and render it suitable for reuse in new products. The approach, known as chemical recycling, has low greenhouse gas emissions compared to other .
The research team also will develop new chemical ways for the controlled breakdown of plastic molecules into valuable raw materials. For example, there is a group of plastics called polyolefins that are used in food packaging, toys and other products. Recovered and purified polyolefins could be upcycled to produce waxes used in adhesives, coatings and printing inks. They can also serve as building blocks for additive manufacturing technologies.
The ideation of the project stemmed from ongoing multidisciplinary efforts to improve plastics recycling led by RENEW, such as the institute’s new state-funded effort to improve plastics recycling.



Publication date: 27/11/2020

Omnexus (news)



      

This project has received funding from the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 837761.